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Abstract

In this paper we investigate the operatfy = —A — B8(- — I') in L2(R?), whereg > 0 andI"
is a closedC# Jordan curve ifR?. We obtain the asymptotic form of each eigenvaluéfgfas g
tends to infinity. We also get the asymptotic form of the number of negative eigenvalégsiof
the strong coupling asymptotic regime. © 2002 Elsevier Science B.V. All rights reserved.

MSC:35J10; 35P15

Keywords:Eigenvalues of the Schrodinger operatinteraction

1. Introduction

In this paper we study the Schrodinger operator witBriateraction on a loop. Let
I':[0,L] 35— (I'(s), Ix(s)) € R? be a closed’* Jordan curve which is parametrized
by the arc length. Ley : [0, L] — R be the signed curvature éf. For 8 > 0, we define

as(f, /) = IV f 1722, — B /F |f(0)[2ds, for fe HY(R?). (1.1)

By Hj we denote the self-adjoint operator associated with the fgrriThe operatoHy is
formally written as—A — 88(- — I'). As the curve is smooth one can alternatively defiize
through boundary conditions expressing the jump of normal derivative aErsanalogy
with the proof of Proposition 2.4. Sindé is compact ink2, we havesesd Hg) = [0, 00)
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by [3] Theorem 3.1. Our main purpose is to study the asymptotic behavior of the negative
eigenvalues oHg asp tends to infinity. We define

@2 1,
SZ_@_ZV(S) in L (O, L) (12)
with the domain
P={pec H’O,L); o¢(L)=¢0), ¢ (L)=¢0) (1.3)

For j € N, we denote by:; the jth eigenvalue of counted with multiplicity. For a finite
setA, we denote by # the number of the elements af Our main results are the following.

Theorem 1. Letn be an arbitrary integer. There exisggn) > 0 such that
#og(Hg) > n for B> B(n).

For g > B(n) we denote by, (8) the nth eigenvalue dfly counted with multiplicity. Then
An(B) admits an asymptotic expansion of the form

M(B) = —2B%+u, + OB tlogp) as B — oo. (1.4)

Theorem 2. The functiong — #o4(Hg) admits an asymptotic expansion of the form

L
#Hog(Hp) = Zﬂ + O(ogp) as B — oo. (1.5)

The Schrodinger operator with a singular interaction has been studied by numerous au-
thors (see [1-3] and the references therein). The basic concepts of the theory are summarized
in the monograph [1]. A particular case oBanteraction supported by a curve attracted
much less attention (see [3-5,8,10] and a recent paper [6]). In [3] some upper bounds to the
number of eigenvalues for a more general class of operators fndgpendent on the arc
length parameter) were obtained by the Birman—Schwinger argument (see [3] Theorems 3.4,
3.5and 4.2). As itis usually the case with the Birman—Schwinger technique, these bounds
are sharp for small positive (see [3] Example 4.1) while they give a poor estimate in the
semiclassical regime. On the contrary, our estiniatg) is close to optimal for large posi-
tive 8. Our main tools to prove Theorems 1 and 2 are the Dirichlet—Neumann bracketing and
approximate operators with separated variables. We refrain from illustrating the results by
solvable examples because these will be given in another work, currently under preparation.

2. Proof of Theorem 1

Let us prepare some quadratic forms and operators which we need in the sequel. For this
purpose, we first need the following result.

Lemma2l. Letd, be the map
[0,L) x (—a, a) > (s, u) = (I'i(s) — ul"'2(s), Io(s) + ul"1(s)) € R>.

Then there existg; > 0 such that the map,, is injective for any: € (0, a1].
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Proof. We extendI” to a periodic function with period., which we denote by (s) =
(I'1(s), I>(s)). Sincer is a closed”* Jordan curve, we havE € C*(R). We extendy to
a functiony onR by using the formuld@ (s) = I 1(s)I""2(s) — I'"2(s)I"'1(s). Theny ()
is periodic with period. andy € C?(R). By & we denote the map

R? 5 (s, u) > (I'1(s) — ul"2(s), Ia(s) + ul"1(s)) € R?.
Let J @ be the Jacobian matrix @. We put

= maxy ()|.
Y+ [o,ﬁqy(”

We have
- 1 1 1
det/@(s,u) =1+ uy(s) > =, for (,u)eRx|—— —|. (2.1)
2 2y 274
In addition, there exists a constavit > 0 such that
[0%®;(y)] <M on Rx [—i i} (2.2)
v 2y 2y4

forany 1 < |o| < 2andj = 1,2, wherey = (s,u) and @ (y) = (D1(y), P2(y)).
Combining [11] Lemma 3.6 witl2.1) and(2.2), we claim that there existg € (0, 1/2y,)
such thawp is injective on k — ao, k + ap] x [—ao, ap] for all k € R. We put

= ' in ') —T ) 2.3
T e Qo 0~ P Pl @9

Sincel” isinjective on[Q L) andI"(-) has period., we haver > 0. Puta; = min{ao, 7/4}.

Let us show that® is injective on [QL) x (—az,a1). We first prove the following
claim.

() Assume that® (s1, u1) = P (s2, u2), |s1 — s2| < L/2, and(sy, u1), (s2,u2) € R x
(—az, a1). Then we havés, u1) = (S~2, uo).
Sinced (s1, u1) = P (s2, u2) andll“jf(-)l < lonRforj =12, we obtain

|F1(s1) — Ti(s2)| = |ualy(s1) — ualy(s2)| < 2a1,

|Po(s1) — Ta(s2)| = |usly(s1) — uz2ly(s2)| < 2a.
So we havel (s1) — I'(s2)| < 2+/2a1, and therefore

| (s1) — (s2)] < 7.

This together with (2.3) implies thét; — s2| < ap. Sinced is injective on f1 —ag, s1+
ag] x [—ao, ap]l and @ (s1, u1) = @ (s2, uz), we get(s1, u1) = (s2, u2). In this way we
proved(i).
Next we shall prove the following implication.
(i) Assumethatd (s1, u1) = @ (s2, u2),s1 < s2,and(s1, u1), (s2,u2) € [0, L) x(—az, a1).
Then we have, —s1 < L/2.
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We prove this by contradiction. Assume that- s1 > L/2. We putsz = s, — L. Then
we get 0< 51 —s3 < L/2 and®(s3, uz) = P (s1, u1). As in the proof of (i) we obtain
(s1, u1) = (s3, u2) which violates the fact that & s1 — s3 < L/2, so we proved (ii).

Combining (i) with (ii), we conclude thab is injective on [Q L) x (—az1, a1). O

Let0 < a < ay. Let X, be the strip of width 2 enclosingl™:
X, =®(0, L) x (—a,a)).

Then RZ\E consists of two connected components which we denota!pyand A%,
whereA'n is compact. We define

G (f ) =1V [ 1725, — B /F |f0IdS, for f e Hy(Za).

4q p(f. f)=||Vf||§2(2a)—ﬁ/ |f)IPdS, for  fe HY(Z).

Let L+ﬁ andL_ 4 be the self-adjoint operators associated with the faygh andg,
respectively. By using the Dirichlet-Neumann bracketing (see [9] XIII. 15 Proposmon 4),
we obtain

(—aN |n)®L7ﬂ®( AAout)<H,3<( AA.n)EBL pO (= AAout) (2.4)

in L2(AM) @ L?(Z,) ® L2(AY). In order to estimate the negative eigenvaluedgfit is
sufficient to estimate those dit:;ﬁ andL_ ,, because the other operators involved in (2.4)
are positive.

To this aim we introduce two operators irf((0, L) x (—a, a)) which are unitarily

equivalent tchJr andLa‘ g respectively. We define

0F ={p € HN(0.L) x (-a.a)); ¢(L,")=¢©0,)) on (—a.a),
('a a) = (0(, _a) =0 on (0’ L)}a

0, ={p € HX(O,L) x (—a,a)); ¢(L,)=¢(0,-) on (—a,a),

bip(f )= //(1+W<s)) " duds +//

+/ f V(s,u)|f|2dsdu—,3f |f(s,0)|?ds, for fe QF,
0 —a 0

b, g(fs )= / / (L+uy(s)~? duds+/ /

+/ f V(s,u)|f|2dsdu—,8/ | £ (s, 0)|%ds
0 —a 0

1 (L ye) 2 1Ly 2
_Efo mv(&aﬂ dS+§/O 1_—)|f( ,—a)|“ds

_f

du ds

du ds
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for f € Q;, where
V(s,u) =31+ uy () 3uy”(s) = 3L+ uy () u®y'(s)?
— 1L+ uy () Py ()2

Let B, and B, be the self-adjoint operators associated with the fobiis andb, ,,
respecuvely Then we have the following result.

Lemma 2.2. The operatorsB*lg and B, p are unitarily equivalent tﬂ*/g andL ap 1€
spectively

Proof. We prove the assertion only fdi - because that foB*lg is similar. Givenf €
L%(x,), we define
WUaf)(s,w) = L+ uy (N2 f(@a(s, ), (s,u) € (0, L) x (—a,a). (2.5)

From Lemma 2.1, we infer that, is a unitary operator fro?(X,) to L2((0, L) x (—a, a)).
Since I is a closedC? Jordan curvelJ, is a bijection fromH1(X,) to Q. Using an
integration by parts, we obtain

quﬁ(fv 8 _b;ﬂ(Uafv Uag)

1 (e 3. G|
- —Ef [(1+uy(S)) v (S)(Uaf)(s’”)(U“g)(s’”)]s=o du

—a

SinceU, f andU,g as elements of), satisfy the periodicity condition, we get

Gy p(f-8) = b, g(Uaf. Uag), Tor f, g€ H(Z,).
This together with the first representation theorem (see [7] Theorem VI.2.1) implies that

UiB, yUa =Ly 4.

This completes the proof of the lemma. O
Next we estimateBI 8 andB, P by operators with separated variables. We put
Y+ =maxo, 1y’ ()l Y+ =maxo 1y (),
Vils) = 5(L—ayp)ay”s — 3L+ ay)a? (v )% = L+ ay) Py (9%,

Vo(s) = —3(L—ays) 2ay” — 3(L—ayy) %a?(y' )% — A —ayp) "2y ()2

If0 <a < (1/2)y4, we can define
5 L pa 2 L pa
b (f ) = (1—ay+>—2f f dl ds +f /
’ 0 —a 0 —a

L a L
+f / Vi (s)f1? du ds —,3/ |f(s,0)?ds, for feQF,
0 —a 0

2
du ds
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2 L a 2
—| duds+ / / of
0 —a

B L a 8f
_ _ ) oy
by o (f f)=A+app) /O i |2 uf

L a L
+/ f v_<s>|f|2duds—ﬁ/ £ (s, O ds
0 —a 0

L
—y+/0 (F . )P+ 1f s, —)Pds, for feQr.

du ds

Then we have

b g(fi ) bl ), for feof, (2.6)
by g(fs 1) < bz g(f. ), for feQ. 2.7)

Let H, and H, , be the self-adjoint operators associated with the fobfns andb, 4,
respectively. LetT;fﬁ be the self-adjoint operator associated with the form

i (fo ) =/ |f'@)?du — BIf(O))%,  f € Hy(—a, a).
—a
Let finally T, s be the self-adjoint operator associated with the form

tog(f: ) =f |f' @) du — BIFO)) = y4 (1 f @ + | f (—a)]?),

f e Hl(—a, a).
We define
d2
U = —(1—ay+)_ 5+ Vi(s) in L*0,L) withthe domairP,
d2
U =—1+ayy)” 2 5+ V_(s) in L%0,L) withthedomainP.

Then we have
HMy=Uf@1+10T},,  H,,=U; ®1+1®T, (2.8)
Next we consider the asymptotic behavior of each eigenvaltgodisa tends to zero. Let
(a) be thejth eigenvalue ot/:F counted with multiplicity. The following proposition is
needed to prove Theorem 2 as well as Theorem 1.
Proposition 2.3. There exist€; > 0 such that
(@) — pjl < Craf? (2.9)
and
7 (@) — | < C1af? (2.10)

for j e NandO < a < 1/(2y+), where(C1 is independent of, a.
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Proof. We define
So = —azz in L2(0, L) withthe domainp.

Notice that thejth eigenvalue oSy counted with multiplicity is 4f/2]?(r/L)?. Since
IS — Sollser2o.)) < 372

the min—max principle (see [9] Theorem XIII.2) implies that

u=ag] G

Since

1
< ny, for jeN. (2.11)

Uf = Q—ay) S =3 —ay)Pay”s = 3+ ayn) d®(y'4)?
+ayr(L+ay) 2L —ay) 2y ()%
we infer that there exist§y > 0 such that
luf—@a- aV+)_2S||B(L2(O,L)) < Coa, for 0<a <1/2y:).
This together with the min—max principle implies that
1@ = A =ay)%u;l < Coa for 0<a<1/Qpy).
Hence we get
ay+(2—ayy) .
L—ayy)?
Combining this with (2.11) we arrive at (2.9).
The proof of (2.10) is similar. O

luj (@) — )l < Coa +

Next we estimate the first eigenvalue?gfﬁ.

Proposition 2.4. Assume thaa > 8/3.ThenTan/3 has only one negative eigenvalue which
we denote bya‘fﬂ. It satisfies the inequalities

—3B? < tfy < —3B%+ 287 exp(—3(Ba)).

Proof. Letk > 0. We will show that-k? is an eigenvalue oTafﬁ if and only if
8a.p(k) == log(B — 2k) — log(B + 2k) + 2ka= 0.

Assume that-k2 is an eigenvalue oTa’fﬁ. Notice that

D(T,}y) ={p € Hy(=a,a);  ¢loa € H(0,0), ¢la0 € H*(—a,0),
¢'(+0) — ¢'(=0) = —B¢(0)}.
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Let a non-zera) be the eigenfunction cii“(;;3 associated with the eigenvalué?, then we
have

() —v"(u) = —k>y(u) on(—a, 0) U (0, a);
(i) ¥(xa) =0;
(i) ¥'(+0) — ¢/(=0) = =By (0).

Since Tafﬁ commutes with the parity operatgi(x) — f(—x), the ground state)
satisfiesy (u) = ¥ (—u) on [0, a]. Combining this with (i), we infer thai is of the form

C1e 4+ Coe™™, w e (0,a),
Y(u) = ) (2.12)
C8V + C1e7M, u e (—a,0).
Note that (ii) is equivalent to
Co = —C1624.
In addition, (iii) is equivalent to
(2k + B)C1— (2k — B)C2 = 0.

Thus the equation faf'; andC2 becomes

2%k+p —@2%—=B)\ (1)
<62ka . ><C2>_o. (2.13)

Since(C1, C2) # (0, 0), we get

o 2%+B —(2k—p) o
e =
gZka 1

which is equivalent tg, g(k) = 0.
To check the converse, assume thag (k) = 0. Then (2.13) has a solutia€’y, Co) #
(0, 0). It is easy to see that the functignfrom (2.12) satisfies (i)—(iii) and} € D(Tjﬂ).
Let us show thag, g(-) has a unique zero if0, 8/4). We haveg, g(0) = 0. Since

—48

57— a2 + 2a,

d
&ga,ﬂ(k) =

we claim thatg, g(-) is monotone increasing o, %\//32 — 28/a) and is monotone de-
creasing or(3+/p2 — 2f/a, 3B). Moreover, we have

lim k) = —o0.
k—>,3/2—0g“”3( ) o

Hence the functiorg, g(-) has a unique zero 0, §/2). Sinceap > 8/3, we have

3V/B2 —2B/a > B/4. Consequently, the solutidrnas the fornk = g/2—s,0 < s < p/4.
Taking into account the relatiog), 4 (k) = 0, we get

log 25 = 10g(28 — 5) — Ba + 2as < log 28 — Fap.

So we obtainy < 8 exp(—%aﬁ). This completes the proof of Proposition 2.4. O
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Next we estimate the first eigenvalue®f .

Proposition 2.5. Letap > 8andpg > §y+. ThenT, 4 has a unique negative eigenvalue
¢, g» and moreover we have

2205

- B
16

——,32—

2 ex —E,Ba < <—};‘32
4 PL73 ap =3P

Proof. Let us first show thaTafﬂ has a unigue negative eigenvalue. ket 0. As in the
proof of Proposition 2.4, we infer thatk? is an eigenvalue oTafﬂ if and only if

ke@—y, 2K+ p
ke ke, 2k — B’

Since the left side of (2.14) is positive fbr> y. and the right side of (2.14) is negative
for0 < k < B/2, (2.14) has no solution i/}, 8/2). We put

(2.14)

keka — 2k
k_ka—y+ and hk) = <P
ety 2k — B

gk) =

Then we get lim_, 0 g (k) = co and

v (@ —ekay | 242, 4 kay, (€@ + e7ka

>0 for k>0.
(ke™ka 4 ;)2

g'(k) =

Thusg (k) is monotone increasing df, co). On the other hand,(k) is monotone decreas-
ing on(B/2, 00),
li hk) = lim A(k) = 1.
k—>/|3r}12+0 (k) = oo, kLmoo )
Hence (2.14) has a unique solution(if/2, co). Sinceh(k) is monotone decreasing on
(0, B/2) andg(0) = h(0), we claim that (2.14) has no solution (@, 8/2).

Nextwe showthag (k) > (2k+p)/(2k—p),fork > 3 B.We have2k+pB)/(2%k—p) < 5,
fork > (3/4)8. Fork > (3/4)8, we get

o) > g (§ﬂ> _ _B/HBexp(3/4ap) — v+
T \4 3/ B exp(—(3/Hap) + v+
sinceyy < 3B < 3B exp(3ap)
(3/8)B exp((3/4)apB) __ exp(E/Hap)
~ (3/HBexp(—(3/Map) + (3/8)B  2exp—(3/4aB) + 1
sinceap > 8
b

>~ -5
= 2e6+41
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So (2.14) has no solution irﬁB, 00). Hence, the solutiok of (2.14) is of the formk =
B/2+s,0<s < 3p. From (2.14), we get

56 _ 2k+B _ kekd — o,
4 ~ 2k — B kekap .y,
sinceyy < (3)B < (3B exp((3)Ba) andker® > 18 exp(3Ba)

. (/8B exp((1/2)pa)
kewka 4y,

sinceke k@ < k < (3)B andyy < 38

. (A/8)pexp(1/2)pa) _ lexp(%ﬂa).

- 9/8)8 -9
Thus we ge < 428 exp(—3Ba), which givesk? > 2/4 and

2 2 2
kz—%-i-ﬁs—i-s ﬂ + ﬁ exp( ﬁa>+<475> B? exp(—Ba)

ﬂZ 45\° , 1
7 + ﬁ exp(——ﬁa) <Z) B exp(—zﬂa)

_,32+22056X 1
=7 T 16 &P 2P

This completes the proof of Proposition 2.5. O

Now we are ready to prove Theorem 1.

Proof of Theorem 1. We puta(8) = 68~ 1logB. Letéﬂ ; be thejth eigenvalue of = a(B). B
From Propositions 2.4 and 2.5, we have
&51="Capp ANd £ >0,

From (2.8), we infer tha’rg T (a(,B))}j reN IS a sequence of all elgenvaluesmfﬂ) 8
counted with multiplicity. From Proposition 2.3, we have

&+ ux @) = i @) = p+ 0B tlogp) (2.15)
for j > 2andk > 1. Forj € N, we define

Ui = Sapp T 1 @(B). (2.16)
From Propositions 2.3-2.5, we get

Ty =—3B°+uj+ 0@ togp) as B — co. (2.17)

Letn € N. Combining (2.15) with (2.17), we claim that there exigta) > 0 such that

T, <0 T, <& @B, T, <&+ @)
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for B > B(n), j = 2, andk > 1. Hence thejth eigenvalue oﬂfljﬂ)’ﬁ counted with

multiplicity is Tﬁi,j for j < nandg > B(n). Let > B(n) and denote byc]?i(ﬂ) the jth
eigenvalue otj(ﬂ)yﬂ. From (2.4) and (2.6), and the min—max principle we obtain

5 <7 (B) and «F(B)<tf,, for 1<j<n, (2.18)
so we have," (8) < 0. Hence the min—-max principle and (2.4) imply ttt& has at least
n eigenvalues if—oo, &, (B)). For 1< j < n, we denote by (8) the jth eigenvalue of
Hg. We have

ki (B)<hj(B) <«f(B), for 1<j<n
This together with (2.17) and (2.18) implies that
2j(B)=—1B24+ 1+ OB tlogp) as f— oo, for 1< j<n.

This completes the proof of Theorem 1. O

3. Proof of Theorem 2

For a self-adjoint operatot, we define
N7 (A) = #{od(A) N (—o0, 0)}.

From (2.4), we have\/—(L;ﬂ) > #oq(Hpg) > N—(Ljﬁ). On the other hand, Lemma

2.2,(2.6)and (2.7) imply tha¥ ~(H, ;) = N~ (L, z)andN (L] ») = N~ (H; ). Inthis
way we get

N~(H},) < #oda(Hp) < N™(H, p). (3.1)
Recall the relation (2.16). We define
Kﬂiz{jeN; r;j<0}

and use the following proposition to estimaﬁ’e(ﬁjﬁ).
Proposition 3.1. We have

L
#Ky = ——B+O(ogp) as B — oo.
2
Proof. We chooseC, > 0 such that-(1/4)C3 < —1 — (1/4)y2. Let B > max2, C2}.
Then we havel/4)(8 — C2)? < (1/4)% — 1 — (1/4)y2. We get
Ky =1 eN; uj@p) <—¢ip 4
by using Propositions 2.3 and 2.4

S{jeN; pj+Cra(p)j? < 1p%— 282 exp(—3pa(B))}
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sinceu; < [j/2%(w/L)? + (1/4)y?
.92
S I (m\2 1 2 1, 2 1,
D{JGNv 4[5] (Z) + C1(B~ " logB)j <Z,3 —E—4J/+}
since > 2

. 2 (T2 _ . 1 1
DijeN; 12(Z> + C1(B 1|09,3)12<2ﬂ2—1—z)/f}

2 1
Sljen; 2 (%) +C1(pM0gp)j® = 7B - cg>2}

1 ) —1/2
=1j€eN; jfé(,B—Cz) ((%) +C1,3_1Iogﬂ> }

Furthermore, from

1 772 1 Y
E(ﬂ - C2) ((Z) + C1B Iogﬂ) =57 O(logp) as B — oo,
we infer that
+_ LB
#Kg > o— + O(ogpB) as B — oo. (3.2)
2

Similarly we get

Kg={jeN; u;@P) <—Cup), ﬂ}

- c 2205
C{JG ;o — Cra(B)j® < /3 +F}
sincedj —1) > jforj>2
2 2205 1
c{l}U{jZZ; G-12(5) ~acuptogp i~ 12 < 4 +ﬂ+—y$}
B . 1, 2205 1 ,\'?
_{1}U{122, J<1+< B+ 48 +4y+)
a2 . —1/2
x((z) —4C48 Iog,B) .
However
1,225 1 ,\Y"2(m\2 . ]
1+( B+ T+ ) <<Z) 4C18t1og B = 5 +0dogp)

asp — oo, which leads to

#K g < Lé + O(ogpB) as B — oo. (3.3)
2w
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Slncerﬁj < rﬂ jowe getky O K+ Combining this with (3.2) and (3.3), we get the
assertion of Proposition 3.1. O

We also need the following result to estimate the second eigenvall?;z‘gﬁof

Proposition 3.2. Let0 < a < 1/+/2y, andg > 0. Then T, s has no eigenvalue in
[0, min{z?/16a%, By /2, B2}).

Proof. Letk > 0. As in the proof of Proposition 2.4, we infer thgt is an eigenvalue of
T, ifand only if k solves either

tanka= i (3.4)
Y+
or
B+ 2ky.
tanka= ——8. 3.5
anka T (3.5)
Fork € (0, 7 /4a), we have
. k
tanka < +/2 sinka < v2ka < —. (3.6)
Y+

Thus (3.4) has no solution i®, 7 /4a). Fork € (0, min{rr/4a, /By+/~/2, B}), we have

Bi2kye o k _PreB -T2

Br+ =227 yy (By+ — 22y

This together with (3.6) implies that (3.5) has no solutio(()'rmin{n/4a VBY+/N2, BY).
Consequentlyr,, has no eigenvalue i, min{z?/16a%, By /2, B?}).

Next we show that Ois not an elgenvaluelgj' As in the proof of Proposition 2.4, we
infer that O is an eigenvalue df,, if and only if eithery,a = 1 or B(yra — 1) = 2y,

holds. Since 0< a < 1/+/2y, andp > 0, we havey,a < 1 andB(yia — 1) < 2y,.
Hence 0 is not an eigenvalue ﬁjfﬂ, and the proof is complete. O

Now we are in a position to prove Theorem 2.

Proof of Theorem 2. Let us first show that

N~ (H #K, for sufficiently larges > 0. (3.7)

a(p), ,3) B

Recall thai{s 5t ¢ (@(B))}; ren is asequence of all elgenvaluesqu(ﬂ) 8 counted with
multiplicity. From Proposition 3.2, we have

- : 72 Bry
2= m'n{leaw)?’T ’ }
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This together with (2.10) implies that there exigts> 0 such thalE}3 >+ puy@p) >0
for B > Bo. We obtain

£ +u @p)>0 for j>2 k=1 and B=>po.

Thus we get

N™(Hyp o) =#(j, k) € N &5 4 (@(B)) < 0}
=#jeN; 1, <0 =#K; for B=fo.
In this way we obtain (3.7). From (3.1), we get

#K < #oa(Hp) < N~ (H,

a(p).8)"
This together with (3.7) and Proposition 3.1implies the assertion of Theorem 2. O

Remark 3.3. We can also prove (1.5) in the case thas an operC* Jordan curve Indeed,
it suffices to use the following operatolﬁtﬁ instead oin =Uf®1+1QT, 5'

A

A* "y = Ui®1+1®Tfﬂ in L%0,L)® L%(—a,a) = L%((0, L) x (—a, a)),

N 5 d? .

U =-@1- ay+)‘ 5+ Vi(s) in L%0,L)
with the Dirichlet boundary condition,

. 5 d?

U- —(1+ay+)* s+ V_(s) in L%0,L)
with the Neumann boundary condition.

Remark 3.4. The operatoiHg can be defined in a different way via a boundary condition
onrI". Letn(x) be the outward normal vector field gh In [3] Remark 4.1, it is shown that
the set

{f € H'(R? N CoR?);  flga\, € HARA\) N C®(RAD),

0 0
o= oy = —pf. for xe r}
ony on_
is the core ofHg, wheredf/an (x) anddf/dn_(x) are the derivatives in the direction of

n(x) and—n(x), respectively, at the point.
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