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Abstract

In this paper we investigate the operatorHβ = −∆− βδ(· −Γ ) in L2(R2), whereβ > 0 andΓ
is a closedC4 Jordan curve inR2. We obtain the asymptotic form of each eigenvalue ofHβ asβ
tends to infinity. We also get the asymptotic form of the number of negative eigenvalues ofHβ in
the strong coupling asymptotic regime. © 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

In this paper we study the Schrödinger operator with aδ-interaction on a loop. Let
Γ : [0, L] � s �→ (Γ1(s), Γ2(s)) ∈ R2 be a closedC4 Jordan curve which is parametrized
by the arc length. Letγ : [0, L] → R be the signed curvature ofΓ . Forβ > 0, we define

qβ(f, f ) = ‖∇f ‖2
L2(R2)

− β
∫
Γ

|f (x)|2 dS, for f ∈ H 1(R2). (1.1)

ByHβ we denote the self-adjoint operator associated with the formqβ . The operatorHβ is
formally written as−∆−βδ(·−Γ ). As the curve is smooth one can alternatively defineHβ
through boundary conditions expressing the jump of normal derivative acrossΓ in analogy
with the proof of Proposition 2.4. SinceΓ is compact inR2, we haveσess(Hβ) = [0,∞)
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by [3] Theorem 3.1. Our main purpose is to study the asymptotic behavior of the negative
eigenvalues ofHβ asβ tends to infinity. We define

S = − d2

ds2
− 1

4
γ (s)2 in L2(0, L) (1.2)

with the domain

P = {ϕ ∈ H 2(0, L); ϕ(L) = ϕ(0), ϕ′(L) = ϕ′(0)}. (1.3)

For j ∈ N, we denote byµj thej th eigenvalue ofS counted with multiplicity. For a finite
setA, we denote by #A the number of the elements ofA. Our main results are the following.

Theorem 1. Letn be an arbitrary integer. There existsβ(n) > 0 such that

#σd(Hβ) ≥ n for β ≥ β(n).
For β ≥ β(n) we denote byλn(β) the nth eigenvalue ofHβ counted with multiplicity. Then
λn(β) admits an asymptotic expansion of the form

λn(β) = −1
4β

2 + µn +O(β−1 logβ) as β → ∞. (1.4)

Theorem 2. The functionβ �→ #σd(Hβ) admits an asymptotic expansion of the form

#σd(Hβ) = L

2π
β +O(logβ) as β → ∞. (1.5)

The Schrödinger operator with a singular interaction has been studied by numerous au-
thors (see [1–3] and the references therein). The basic concepts of the theory are summarized
in the monograph [1]. A particular case of aδ-interaction supported by a curve attracted
much less attention (see [3–5,8,10] and a recent paper [6]). In [3] some upper bounds to the
number of eigenvalues for a more general class of operators (withβ dependent on the arc
length parameter) were obtained by the Birman–Schwinger argument (see [3] Theorems 3.4,
3.5 and 4.2). As it is usually the case with the Birman–Schwinger technique, these bounds
are sharp for small positiveβ (see [3] Example 4.1) while they give a poor estimate in the
semiclassical regime. On the contrary, our estimate(1.5) is close to optimal for large posi-
tiveβ. Our main tools to prove Theorems 1 and 2 are the Dirichlet–Neumann bracketing and
approximate operators with separated variables. We refrain from illustrating the results by
solvable examples because these will be given in another work, currently under preparation.

2. Proof of Theorem 1

Let us prepare some quadratic forms and operators which we need in the sequel. For this
purpose, we first need the following result.

Lemma 2.1. LetΦa be the map

[0, L)× (−a, a) � (s, u) �→ (Γ1(s)− uΓ ′
2(s), Γ2(s)+ uΓ ′

1(s)) ∈ R2.

Then there existsa1 > 0 such that the mapΦa is injective for anya ∈ (0, a1].
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Proof. We extendΓ to a periodic function with periodL, which we denote byΓ̃ (s) =
(Γ̃1(s), Γ̃2(s)). SinceΓ is a closedC4 Jordan curve, we havẽΓ ∈ C4(R). We extendγ to
a functionγ̃ onR by using the formulãγ (s) = Γ̃ ′′

1(s)Γ̃
′
2(s)− Γ̃ ′′

2(s)Γ̃
′
1(s). Thenγ̃ (·)

is periodic with periodL andγ̃ ∈ C2(R). ByΦ we denote the map

R
2 � (s, u) �→ (Γ̃1(s)− uΓ̃ ′

2(s), Γ̃2(s)+ uΓ̃ ′
1(s)) ∈ R2.

Let JΦ be the Jacobian matrix ofΦ. We put

γ+ = max
[0,L]

|γ (·)|.

We have

detJΦ(s, u) = 1 + uγ̃ (s) ≥ 1

2
, for (s, u) ∈ R×

[
− 1

2γ+
,

1

2γ+

]
. (2.1)

In addition, there exists a constantM > 0 such that

|∂αy Φj (y)| ≤ M on R×
[
− 1

2γ+
,

1

2γ+

]
(2.2)

for any 1 ≤ |α| ≤ 2 andj = 1,2, wherey = (s, u) andΦ(y) = (Φ1(y),Φ2(y)).
Combining [11] Lemma 3.6 with(2.1) and(2.2), we claim that there existsa0 ∈ (0,1/2γ+)
such thatΦ is injective on [k − a0, k + a0] × [−a0, a0] for all k ∈ R. We put

τ = min
p∈[a0,L/2]

min
t∈[0,L]

|Γ̃ (t)− Γ̃ (t + p)|. (2.3)

SinceΓ̃ is injective on [0, L) andΓ̃ (·) has periodL, we haveτ > 0. Puta1 = min{a0, τ/4}.
Let us show thatΦ is injective on [0, L) × (−a1, a1). We first prove the following
claim.

(i) Assume thatΦ(s1, u1) = Φ(s2, u2), |s1 − s2| ≤ L/2, and(s1, u1), (s2, u2) ∈ R ×
(−a1, a1). Then we have(s1, u1) = (s2, u2).

SinceΦ(s1, u1) = Φ(s2, u2) and|Γ̃ ′
j (·)| ≤ 1 onR for j = 1,2, we obtain

|Γ̃1(s1)− Γ̃1(s2)| = |u1Γ̃
′
2(s1)− u2Γ̃

′
2(s2)| ≤ 2a1,

|Γ̃2(s1)− Γ̃2(s2)| = |u1Γ̃
′
1(s1)− u2Γ̃

′
1(s2)| ≤ 2a1.

So we have|Γ̃ (s1)− Γ̃ (s2)| ≤ 2
√

2a1, and therefore

|Γ̃ (s1)− Γ̃ (s2)| < τ.
This together with (2.3) implies that|s1−s2| < a0. SinceΦ is injective on [s1−a0, s1+
a0] × [−a0, a0] andΦ(s1, u1) = Φ(s2, u2), we get(s1, u1) = (s2, u2). In this way we
proved(i).

Next we shall prove the following implication.
(ii) Assume thatΦ(s1, u1) = Φ(s2, u2), s1 ≤ s2, and(s1, u1), (s2, u2) ∈ [0, L)×(−a1, a1).

Then we haves2 − s1 ≤ L/2.
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We prove this by contradiction. Assume thats2 − s1 > L/2. We puts3 = s2 − L. Then
we get 0< s1 − s3 < L/2 andΦ(s3, u2) = Φ(s1, u1). As in the proof of (i) we obtain
(s1, u1) = (s3, u2) which violates the fact that 0< s1 − s3 < L/2, so we proved (ii).

Combining (i) with (ii), we conclude thatΦ is injective on [0, L)× (−a1, a1). �

Let 0< a < a1. LetΣa be the strip of width 2a enclosingΓ :

Σa = Φ([0, L)× (−a, a)).
ThenR2\Σa consists of two connected components which we denote byΛin

a andΛout
a ,

whereΛin
a is compact. We define

q+
a,β(f, f ) = ‖∇f ‖2

L2(Σa)
− β

∫
Γ

|f (x)|2 dS, for f ∈ H 1
0 (Σa),

q−
a,β(f, f ) = ‖∇f ‖2

L2(Σa)
− β

∫
Γ

|f (x)|2 dS, for f ∈ H 1(Σa).

Let L+
a,β andL−

a,β be the self-adjoint operators associated with the formsq+
a,β andq−

a,β ,
respectively. By using the Dirichlet–Neumann bracketing (see [9] XIII.15, Proposition 4),
we obtain

(−∆N
Λin
a
)⊕ L−

a,β ⊕ (−∆N
Λout
a
) ≤ Hβ ≤ (−∆D

Λin
a
)⊕ L+

a,β ⊕ (−∆D
Λout
a
) (2.4)

in L2(Λin
a )⊕L2(Σa)⊕L2(Λout

a ). In order to estimate the negative eigenvalues ofHβ , it is
sufficient to estimate those ofL+

a,β andL−
a,β , because the other operators involved in (2.4)

are positive.
To this aim we introduce two operators inL2((0, L) × (−a, a)) which are unitarily

equivalent toL+
a,β andL−

a,β , respectively. We define

Q+
a = {ϕ ∈ H 1((0, L)× (−a, a)); ϕ(L, ·) = ϕ(0, ·) on (−a, a),
ϕ(·, a) = ϕ(·,−a) = 0 on (0, L)},
Q−
a = {ϕ ∈ H 1((0, L)× (−a, a)); ϕ(L, ·) = ϕ(0, ·) on (−a, a)},

b+a,β(f, f )=
∫ L

0

∫ a
−a
(1 + uγ (s))−2

∣∣∣∣∂f∂s
∣∣∣∣
2

duds +
∫ L

0

∫ a
−a

∣∣∣∣∂f∂u
∣∣∣∣
2

duds

+
∫ L

0

∫ a
−a
V (s, u)|f |2 ds du− β

∫ L
0

|f (s,0)|2 ds, for f ∈ Q+
a ,

b−a,β(f, f )=
∫ L

0

∫ a
−a
(1 + uγ (s))−2

∣∣∣∣∂f∂s
∣∣∣∣
2

duds +
∫ L

0

∫ a
−a

∣∣∣∣∂f∂u
∣∣∣∣
2

duds

+
∫ L

0

∫ a
−a
V (s, u)|f |2 ds du− β

∫ L
0

|f (s,0)|2 ds

−1

2

∫ L
0

γ (s)

1 + aγ (s) |f (s, a)|
2 ds + 1

2

∫ L
0

γ (s)

1 − aγ (s) |f (s,−a)|
2 ds
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for f ∈ Q−
a , where

V (s, u)= 1
2(1 + uγ (s))−3uγ ′′(s)− 5

4(1 + uγ (s))−4u2γ ′(s)2

−1
4(1 + uγ (s))−2γ (s)2.

Let B+
a,β andB−

a,β be the self-adjoint operators associated with the formsb+a,β andb−a,β ,
respectively. Then we have the following result.

Lemma 2.2. The operatorsB+
a,β andB−

a,β are unitarily equivalent toL+
a,β andL−

a,β , re-
spectively.

Proof. We prove the assertion only forB−
a,β because that forB+

a,β is similar. Givenf ∈
L2(Σa), we define

(Uaf )(s, u) = (1 + uγ (s))1/2f (Φa(s, u)), (s, u) ∈ (0, L)× (−a, a). (2.5)

From Lemma 2.1, we infer thatUa is a unitary operator fromL2(Σa) toL2((0, L)×(−a, a)).
SinceΓ is a closedC4 Jordan curve,Ua is a bijection fromH 1(Σa) to Q−

a . Using an
integration by parts, we obtain

q−
a,β(f, g)− b−a,β(Uaf,Uag)

= −1

2

∫ a
−a

[
(1 + uγ (s))−3γ ′(s)(Uaf )(s, u)(Uag)(s, u)

]s=L
s=0

du.

SinceUaf andUag as elements ofQ−
a satisfy the periodicity condition, we get

q−
a,β(f, g) = b−a,β(Uaf,Uag), for f, g ∈ H 1(Σa).

This together with the first representation theorem (see [7] Theorem VI.2.1) implies that

U∗
a B

−
a,βUa = L−

a,β .

This completes the proof of the lemma. �

Next we estimateB+
a,β andB−

a,β by operators with separated variables. We put

γ ′+ = max[0,L] |γ ′(·)|, γ ′′+ = max[0,L] |γ ′′(·)|,
V+(s) = 1

2(1 − aγ+)−3aγ ′′+ − 5
4(1 + aγ+)−4a2(γ ′+)2 − 1

4(1 + aγ+)−2γ (s)2,

V−(s) = −1
2(1 − aγ+)−3aγ ′′+ − 5

4(1 − aγ+)−4a2(γ ′+)2 − 1
4(1 − aγ+)−2γ (s)2.

If 0 < a < (1/2)γ+, we can define

b̃+a,β(f, f )= (1 − aγ+)−2
∫ L

0

∫ a
−a

∣∣∣∣∂f∂s
∣∣∣∣
2

duds +
∫ L

0

∫ a
−a

∣∣∣∣∂f∂u
∣∣∣∣
2

duds

+
∫ L

0

∫ a
−a
V+(s)|f |2 duds − β

∫ L
0

|f (s,0)|2 ds, for f ∈ Q+
a ,
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b̃−a,β(f, f )= (1 + aγ+)−2
∫ L

0

∫ a
−a

∣∣∣∣∂f∂s
∣∣∣∣
2

duds +
∫ L

0

∫ a
−a

∣∣∣∣∂f∂u
∣∣∣∣
2

duds

+
∫ L

0

∫ a
−a
V−(s)|f |2 duds − β

∫ L
0

|f (s,0)|2 ds

−γ+
∫ L

0
(|f (s, a)|2 + |f (s,−a)|2)ds, for f ∈ Q−

a .

Then we have

b+a,β(f, f ) ≤ b̃+a,β(f, f ), for f ∈ Q+
a , (2.6)

b̃−a,β(f, f ) ≤ b−a,β(f, f ), for f ∈ Q−
a . (2.7)

Let H̃+
a,β andH̃−

a,β be the self-adjoint operators associated with the formsb̃+a,β and b̃−a,β ,

respectively. LetT +
a,β be the self-adjoint operator associated with the form

t+a,β(f, f ) =
∫ a

−a
|f ′(u)|2 du− β|f (0)|2, f ∈ H 1

0 (−a, a).

Let finally T −
a,β be the self-adjoint operator associated with the form

t−a,β(f, f ) =
∫ a

−a
|f ′(u)|2 du− β|f (0)|2 − γ+(|f (a)|2 + |f (−a)|2),

f ∈ H 1(−a, a).
We define

U+
a = −(1 − aγ+)−2 d2

ds2
+ V+(s) in L2(0, L) with the domainP,

U−
a = −(1 + aγ+)−2 d2

ds2
+ V−(s) in L2(0, L) with the domainP.

Then we have

H̃+
a,β = U+

a ⊗ 1 + 1 ⊗ T +
a,β, H̃−

a,β = U−
a ⊗ 1 + 1 ⊗ T −

a,β . (2.8)

Next we consider the asymptotic behavior of each eigenvalue ofU±
a asa tends to zero. Let

µ±
j (a) be thej th eigenvalue ofU±

a counted with multiplicity. The following proposition is
needed to prove Theorem 2 as well as Theorem 1.

Proposition 2.3. There existsC1 > 0 such that

|µ+
j (a)− µj | ≤ C1aj2 (2.9)

and

|µ−
j (a)− µj | ≤ C1aj2 (2.10)

for j ∈ N and0< a < 1/(2γ+), whereC1 is independent ofj , a.
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Proof. We define

S0 = − d2

ds2
in L2(0, L) with the domainP.

Notice that thej th eigenvalue ofS0 counted with multiplicity is 4[j/2]2(π/L)2. Since

‖S − S0‖B(L2(0,L)) ≤ 1
4γ

2
+,

the min–max principle (see [9] Theorem XIII.2) implies that∣∣∣∣∣µj − 4

[
j

2

]2 (π
L

)2
∣∣∣∣∣ ≤ 1

4
γ 2
+, for j ∈ N. (2.11)

Since

U+
a − (1 − aγ+)−2S = 1

2(1 − aγ+)−3aγ ′′+ − 5
4(1 + aγ+)−4a2(γ ′+)2

+aγ+(1 + aγ+)−2(1 − aγ+)−2γ (s)2,

we infer that there existsC0 > 0 such that

‖U+
a − (1 − aγ+)−2S‖B(L2(0,L)) ≤ C0a, for 0< a < 1/(2γ+).

This together with the min–max principle implies that

|µ+
j (a)− (1 − aγ+)−2µj | ≤ C0a for 0< a < 1/(2γ+).

Hence we get

|µ+
j (a)− µj | ≤ C0a + aγ+(2 − aγ+)

(1 − aγ+)2 |µj |.

Combining this with (2.11) we arrive at (2.9).
The proof of (2.10) is similar. �

Next we estimate the first eigenvalue ofT +
a,β .

Proposition 2.4. Assume thatβa > 8/3.ThenT +
a,β has only one negative eigenvalue which

we denote byζ+
a,β . It satisfies the inequalities

−1
4β

2 < ζ+
a,β < −1

4β
2 + 2β2 exp(−1

2(βa)).

Proof. Let k > 0. We will show that−k2 is an eigenvalue ofT +
a,β if and only if

ga,β(k) := log(β − 2k)− log(β + 2k)+ 2ka = 0.

Assume that−k2 is an eigenvalue ofT +
a,β . Notice that

D(T +
a,β) = {ϕ ∈ H 1

0 (−a, a); ϕ|(0,a) ∈ H 2(0, a), ϕ|(−a,0) ∈ H 2(−a,0),
ϕ′(+0)− ϕ′(−0) = −βϕ(0)}.
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Let a non-zeroψ be the eigenfunction ofT +
a,β associated with the eigenvalue−k2, then we

have

(i) −ψ ′′(u) = −k2ψ(u) on (−a,0) ∪ (0, a);
(ii) ψ(±a) = 0;

(iii) ψ ′(+0)− ψ ′(−0) = −βψ(0).
SinceT +

a,β commutes with the parity operatorf (x) �→ f (−x), the ground stateψ
satisfiesψ(u) = ψ(−u) on [0, a]. Combining this with (i), we infer thatψ is of the form

ψ(u) =
{
C1eku + C2e−ku, u ∈ (0, a),
C2eku + C1e−ku, u ∈ (−a,0).

(2.12)

Note that (ii) is equivalent to

C2 = −C1e2ka.

In addition, (iii) is equivalent to

(2k + β)C1 − (2k − β)C2 = 0.

Thus the equation forC1 andC2 becomes(
2k + β −(2k − β)
e2ka 1

)(
C1
C2

)
= 0. (2.13)

Since(C1, C2) �= (0,0), we get

det

(
2k + β −(2k − β)
e2ka 1

)
= 0

which is equivalent toga,β(k) = 0.
To check the converse, assume thatga,β(k) = 0. Then (2.13) has a solution(C1, C2) �=

(0,0). It is easy to see that the functionψ from (2.12) satisfies (i)–(iii) andψ ∈ D(T +
a,β).

Let us show thatga,β(·) has a unique zero in(0, β/4). We havega,β(0) = 0. Since

d

dk
ga,β(k) = −4β

β2 − 4k2
+ 2a,

we claim thatga,β(·) is monotone increasing on(0, 1
2

√
β2 − 2β/a) and is monotone de-

creasing on(1
2

√
β2 − 2β/a, 1

2β). Moreover, we have

lim
k→β/2−0

ga,β(k) = −∞.

Hence the functionga,β(·) has a unique zero in(0, β/2). Sinceaβ > 8/3, we have
1
2

√
β2 − 2β/a ≥ β/4. Consequently, the solutionk has the formk = β/2−s, 0< s ≤ β/4.

Taking into account the relationga,β(k) = 0, we get

log 2s = log(2β − s)− βa + 2as< log 2β − 1
2aβ.

So we obtains < β exp(−1
2aβ). This completes the proof of Proposition 2.4. �
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Next we estimate the first eigenvalue ofT −
a,β .

Proposition 2.5. Let aβ > 8 andβ > 8
3γ+. ThenT −

a,β has a unique negative eigenvalue

ζ−
a,β , and moreover we have

−1

4
β2 − 2205

16
β2 exp

(
−1

2
βa

)
< ζ−

a,β < −1

4
β2.

Proof. Let us first show thatT −
a,β has a unique negative eigenvalue. Letk > 0. As in the

proof of Proposition 2.4, we infer that−k2 is an eigenvalue ofT −
a,β if and only if

keka − γ+
ke−ka + γ+

= 2k + β
2k − β . (2.14)

Since the left side of (2.14) is positive fork ≥ γ+ and the right side of (2.14) is negative
for 0< k < β/2, (2.14) has no solution in [γ+, β/2). We put

g(k) = keka − γ+
ke−ka + γ+

and h(k) = 2k + β
2k − β .

Then we get limk→∞g(k) = ∞ and

g′(k) = γ+(e
ka − e−ka)+ 2k2a + kaγ+(eka + e−ka)

(ke−ka + γ+)2
> 0 for k > 0.

Thusg(k) is monotone increasing on(0,∞). On the other hand,h(k) is monotone decreas-
ing on(β/2,∞),

lim
k→β/2+0

h(k) = ∞, lim
k→∞

h(k) = 1.

Hence (2.14) has a unique solution in(β/2,∞). Sinceh(k) is monotone decreasing on
(0, β/2) andg(0) = h(0), we claim that (2.14) has no solution in(0, β/2).

Next we show thatg(k) > (2k+β)/(2k−β), fork ≥ 3
4β. We have(2k+β)/(2k−β) ≤ 5,

for k ≥ (3/4)β. Fork ≥ (3/4)β, we get

g(k) ≥ g
(

3

4
β

)
= (3/4)β exp((3/4)aβ)− γ+
(3/4)β exp(−(3/4)aβ)+ γ+

sinceγ+ < 3
8β <

3
8β exp(3

4aβ)

≥ (3/8)β exp((3/4)aβ)

(3/4)β exp(−(3/4)aβ)+ (3/8)β = exp((3/4)aβ)

2exp(−(3/4)aβ)+ 1

sinceaβ > 8

≥ e6

2e−6 + 1
> 5.
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So (2.14) has no solution in [3
4β,∞). Hence, the solutionk of (2.14) is of the formk =

β/2 + s, 0< s < 1
4β. From (2.14), we get

5β

4s
≥ 2k + β

2k − β = keka − γ+
ke−ka + γ+

sinceγ+ < (3
8)β < (

3
8)β exp((1

2)βa) andkeka ≥ 1
2β exp(1

2βa)

≥ (1/8)β exp((1/2)βa)

ke−ka + γ+
sinceke−ka < k < (3

4)β andγ+ < 3
8β

≥ (1/8)β exp((1/2)βa)

(9/8)β
= 1

9
exp

(
1

2
βa

)
.

Thus we gets ≤ 45
4 β exp(−1

2βa), which givesk2 ≥ β2/4 and

k2 = β
2

4
+ βs + s2 ≤ β

2

4
+ 45

4
β2 exp

(
−1

2
βa

)
+
(

45

4

)2

β2 exp(−βa)

≤ β
2

4
+ 45

4
β2 exp

(
−1

2
βa

)
+
(

45

4

)2

β2 exp

(
−1

2
βa

)

= β
2

4
+ 2205

16
exp

(
−1

2
βa

)
.

This completes the proof of Proposition 2.5. �

Now we are ready to prove Theorem 1.

Proof of Theorem 1. We puta(β) = 6β−1 logβ. Letξ±β,j be thej th eigenvalue ofT ±
a(β),β .

From Propositions 2.4 and 2.5, we have

ξ±β,1 = ζ±
a(β),β and ξ±β,2 ≥ 0.

From (2.8), we infer that{ξ±β,j +µ±
k (a(β))}j,k∈N is a sequence of all eigenvalues ofH̃±

a(β),β

counted with multiplicity. From Proposition 2.3, we have

ξ±β,j + µ±
k (a(β)) ≥ µ±

1 (a(β)) = µ1 +O(β−1 logβ) (2.15)

for j ≥ 2 andk ≥ 1. Forj ∈ N, we define

τ±
β,j = ζ±

a(β),β + µ±
j (a(β)). (2.16)

From Propositions 2.3–2.5, we get

τ±
β,j = −1

4β
2 + µj +O(β−1 logβ) as β → ∞. (2.17)

Let n ∈ N. Combining (2.15) with (2.17), we claim that there existsβ(n) > 0 such that

τ+
β,n < 0, τ+

β,n < ξ
+
β,j + µ+

k (a(β)), τ−
β,n < ξ

−
β,j + µ−

k (a(β))
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for β ≥ β(n), j ≥ 2, andk ≥ 1. Hence thej th eigenvalue ofH̃±
a(β),β counted with

multiplicity is τ±
β,j for j ≤ n andβ ≥ β(n). Let β ≥ β(n) and denote byκ±

j (β) thej th

eigenvalue ofL±
a(β),β . From (2.4) and (2.6), and the min–max principle we obtain

τ−
β,j ≤ κ−

j (β) and κ+
j (β) ≤ τ+

β,j , for 1 ≤ j ≤ n, (2.18)

so we haveκ+
n (β) < 0. Hence the min–max principle and (2.4) imply thatHβ has at least

n eigenvalues in(−∞, κ+
n (β)). For 1≤ j ≤ n, we denote byλj (β) thej th eigenvalue of

Hβ . We have

κ−
j (β) ≤ λj (β) ≤ κ+

j (β), for 1 ≤ j ≤ n.
This together with (2.17) and (2.18) implies that

λj (β) = −1
4β

2 + µj +O(β−1 logβ) as β → ∞, for 1 ≤ j ≤ n.
This completes the proof of Theorem 1. �

3. Proof of Theorem 2

For a self-adjoint operatorA, we define

N−(A) = #{σd(A) ∩ (−∞,0)}.
From (2.4), we haveN−(L−

a,β) ≥ #σd(Hβ) ≥ N−(L+
a,β). On the other hand, Lemma

2.2, (2.6) and (2.7) imply thatN−(H̃−
a,β) ≥ N−(L−

a,β) andN−(L+
a,β) ≥ N−(H̃+

a,β). In this
way we get

N−(H̃+
a,β) ≤ #σd(Hβ) ≤ N−(H̃−

a,β). (3.1)

Recall the relation (2.16). We define

K±
β = {j ∈ N; τ±

β,j < 0}

and use the following proposition to estimateN−(H̃±
a,β).

Proposition 3.1. We have

#K±
β = L

2π
β +O(logβ) as β → ∞.

Proof. We chooseC2 > 0 such that−(1/4)C2
2 ≤ −1 − (1/4)γ 2+. Let β ≥ max{2, C2}.

Then we have(1/4)(β − C2)
2 < (1/4)β2 − 1 − (1/4)γ 2+. We get

K+
β = {j ∈ N; µ+

j (a(β)) < −ζ+
a(β),β}

by using Propositions 2.3 and 2.4

⊃ {j ∈ N; µj + C1a(β)j
2 < 1

4β
2 − 2β2 exp(−1

2βa(β))}
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sinceµj ≤ [j/2]2(π/L)2 + (1/4)γ 2+

⊃
{
j ∈ N; 4

[
j

2

]2 (π
L

)2 + C1(β
−1 logβ)j2 <

1

4
β2 − 2

β
− 1

4
γ 2
+

}

sinceβ ≥ 2

⊃
{
j ∈ N; j2

(π
L

)2 + C1(β
−1 logβ)j2 <

1

4
β2 − 1 − 1

4
γ 2
+

}

⊃
{
j ∈ N; j2

(π
L

)2 + C1(β
−1 logβ)j2 ≤ 1

4
(β − C2)

2
}

=
{
j ∈ N; j ≤ 1

2
(β − C2)

((π
L

)2 + C1β
−1 logβ

)−1/2
}
.

Furthermore, from

1

2
(β − C2)

((π
L

)2 + C1β
−1 logβ

)−1/2

= Lβ
2π

+O(logβ) as β → ∞,

we infer that

#K+
β ≥ Lβ

2π
+O(logβ) as β → ∞. (3.2)

Similarly we get

K−
β = {j ∈ N; µ−

j (a(β)) < −ζ−
a(β),β}

⊂
{
j ∈ N; µj − C1a(β)j

2 <
1

4
β2 + 2205

4β

}

since 2(j − 1) ≥ j for j ≥ 2

⊂ {1} ∪
{
j ≥ 2; (j − 1)2

(π
L

)2 −4C1(β
−1 logβ)(j − 1)2 <

1

4
β2 + 2205

4β
+1

4
γ 2
+

}

= {1} ∪
{
j ≥ 2; j < 1 +

(
1

4
β2 + 2205

4β
+ 1

4
γ 2
+

)1/2

×
((π
L

)2 − 4C1β
−1logβ

)−1/2
}
.

However

1 +
(

1

4
β2 + 2205

4β
+ 1

4
γ 2
+

)1/2((π
L

)2 − 4C1β
−1 logβ

)−1/2

= Lβ
2π

+O(logβ)

asβ → ∞, which leads to

#K−
β ≤ Lβ

2π
+O(logβ) as β → ∞. (3.3)
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Sinceτ−
β,j < τ

+
β,j , we getK−

β ⊃ K+
β . Combining this with (3.2) and (3.3), we get the

assertion of Proposition 3.1. �

We also need the following result to estimate the second eigenvalue ofT −
a,β .

Proposition 3.2. Let0 < a < 1/
√

2γ+ and β > 0. ThenT −
a,β has no eigenvalue in

[0,min{π2/16a2, βγ+/2, β2}).

Proof. Let k > 0. As in the proof of Proposition 2.4, we infer thatk2 is an eigenvalue of
T −
a,β if and only if k solves either

tan ka = k

γ+
(3.4)

or

tan ka = β + 2kγ+
βγ+ − 2k2

β. (3.5)

Fork ∈ (0, π/4a), we have

tan ka<
√

2 sin ka<
√

2ka<
k

γ+
. (3.6)

Thus (3.4) has no solution in(0, π/4a). Fork ∈ (0,min{π/4a,√βγ+/
√

2, β}), we have

β + 2kγ+
βγ+ − 2k2

β − k

γ+
= βγ+(β − k)+ 2k(γ+)2β + 2k3

(βγ+ − 2k2)γ+
> 0.

This together with (3.6) implies that (3.5) has no solution in(0,min{π/4a,√βγ+/
√

2, β}).
Consequently,T −

a,β has no eigenvalue in(0,min{π2/16a2, βγ+/2, β2}).
Next we show that 0 is not an eigenvalue ofT −

a,β . As in the proof of Proposition 2.4, we

infer that 0 is an eigenvalue ofT −
a,β if and only if eitherγ+a = 1 or β(γ+a − 1) = 2γ+

holds. Since 0< a < 1/
√

2γ+ andβ > 0, we haveγ+a < 1 andβ(γ+a − 1) < 2γ+.
Hence 0 is not an eigenvalue ofT −

a,β , and the proof is complete. �

Now we are in a position to prove Theorem 2.

Proof of Theorem 2. Let us first show that

N−(H̃−
a(β),β) = #K−

β for sufficiently largeβ > 0. (3.7)

Recall that{ξ−β,j +µ−
k (a(β))}j,k∈N is a sequence of all eigenvalues ofH̃−

a(β),β counted with
multiplicity. From Proposition 3.2, we have

ξ−β,2 ≥ min

{
π2

16a(β)2
,
βγ+

2
, β2

}
.
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This together with (2.10) implies that there existsβ0 > 0 such thatξ−β,2 + µ−
1 (a(β)) > 0

for β ≥ β0. We obtain

ξ−β,j + µ−
k (a(β)) > 0 for j ≥ 2, k ≥ 1, and β ≥ β0.

Thus we get

N−(H̃−
a(β),β) = #{(j, k) ∈ N2; ξ−β,j + µ−

k (a(β)) < 0}
= #{j ∈ N; τ−

β,j < 0} = #K−
β for β ≥ β0.

In this way we obtain (3.7). From (3.1), we get

#K+
β ≤ #σd(Hβ) ≤ N−(H̃−

a(β),β).

This together with (3.7) and Proposition 3.1implies the assertion of Theorem 2. �

Remark 3.3. We can also prove (1.5) in the case thatγ is an openC4 Jordan curve. Indeed,
it suffices to use the following operatorŝH±

a,β instead ofH̃±
a,β = U±

a ⊗ 1 + 1 ⊗ T ±
a,β :

Ĥ±
a,β := Û±

a ⊗ 1 + 1 ⊗ T ±
a,β in L2(0, L)⊗ L2(−a, a) = L2((0, L)× (−a, a)),

Û+
a := −(1 − aγ+)−2 d2

ds2
+ V+(s) in L2(0, L)

with the Dirichlet boundary condition,

Û−
a := −(1 + aγ+)−2 d2

ds2
+ V−(s) in L2(0, L)

with the Neumann boundary condition.

Remark 3.4. The operatorHβ can be defined in a different way via a boundary condition
onΓ . Letn(x) be the outward normal vector field onΓ . In [3] Remark 4.1, it is shown that
the set{

f ∈ H 1(R2) ∩ C0(R
2); f |R2\Γ ∈ H 2(R2\Γ ) ∩ C∞(R2\Γ ),

∂f

∂n+
(x)− ∂f

∂n−
(x) = −βf (x), for x ∈ Γ

}

is the core ofHβ , where∂f/∂n+(x) and∂f/∂n−(x) are the derivatives in the direction of
n(x) and−n(x), respectively, at the pointx.
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